Quasi-linear Compressed Sensing
نویسندگان
چکیده
Inspired by significant real-life applications, in particular, sparse phase retrieval and sparse pulsation frequency detection in Asteroseismology, we investigate a general framework for compressed sensing, where the measurements are quasi-linear. We formulate natural generalizations of the well-known Restricted Isometry Property (RIP) towards nonlinear measurements, which allow us to prove both unique identifiability of sparse signals as well as the convergence of recovery algorithms to compute them efficiently. We show that for certain randomized quasi-linear measurements, including Lipschitz perturbations of classical RIP matrices and phase retrieval from random projections, the proposed restricted isometry properties hold with high probability. We analyze a generalized Orthogonal Least Squares (OLS) under the assumption that magnitudes of signal entries to be recovered decay fast. Greed is good again, as we show that this algorithm performs efficiently in phase retrieval and Asteroseismology. For situations where the decay assumption on the signal does not necessarily hold, we propose two alternative algorithms, which are natural generalizations of the well-known iterative hard and soft-thresholding. While these algorithms are rarely successful for the mentioned applications, we show their strong recovery guarantees for quasi-linear measurements which are Lipschitz perturbations of RIP matrices.
منابع مشابه
Non-convex Fraction Function Penalty: Sparse Signals Recovered from Quasi-linear Systems
The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is no longer suitable. Compared with the compressed sensing under the linear circumstance, this nonli...
متن کاملFrames for compressed sensing using coherence
We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.
متن کاملSparse signals recovered by non-convex penalty in quasi-linear systems
The goal of compressed sensing is to reconstruct a sparse signal under a few linear measurements far less than the dimension of the ambient space of the signal. However, many real-life applications in physics and biomedical sciences carry some strongly nonlinear structures, and the linear model is no longer suitable. Compared with the compressed sensing under the linear circumstance, this nonli...
متن کاملOn RIC bounds of Compressed Sensing Matrices for Approximating Sparse Solutions Using ℓq Quasi Norms
This paper follows the recent discussion on the sparse solution recovery with quasi-norms lq, q ∈ (0, 1) when the sensing matrix possesses a Restricted Isometry Constant δ2k (RIC). Our key tool is an improvement on a version of “the converse of a generalized Cauchy-Schwarz inequality” extended to the setting of quasi-norm. We show that, if δ2k ≤ 1/2, any minimizer of the lq minimization, at lea...
متن کاملOn RIC bounds of Compressed Sensing Matrices for Approximating Sparse Solutions
This paper follows the recent discussion on the sparse solution recovery with quasi-norms `q, q ∈ (0, 1) when the sensing matrix possesses a Restricted Isometry Constant δ2k (RIC). Our key tool is an improvement on a version of “the converse of a generalized Cauchy-Schwarz inequality” extended to the setting of quasi-norm. We show that, if δ2k ≤ 1/2, any minimizer of the lq minimization, at lea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Multiscale Modeling & Simulation
دوره 12 شماره
صفحات -
تاریخ انتشار 2014